If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+2a-11=0
a = 1; b = 2; c = -11;
Δ = b2-4ac
Δ = 22-4·1·(-11)
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-4\sqrt{3}}{2*1}=\frac{-2-4\sqrt{3}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+4\sqrt{3}}{2*1}=\frac{-2+4\sqrt{3}}{2} $
| (r-4)/6=1 | | 7=4x-7x+7 | | 0=3x+2x+10 | | N/15=11n= | | 2x+(x/2)=75 | | (3x/7)=21 | | 4a^2+8a-44=0 | | x^2–3x+2=0 | | a^2+2a=11 | | –24=(10+z) | | 6(3x-2)=9(2x+4) | | –15x–9=36 | | 9x-7-2x+1=5x+6 | | 120+z=190 | | 3x+2+4=21 | | 39+8v=5(8v-5) | | 2x+5-6x+8=-2(2x+5)+23 | | 1x+2x+3=180 | | -72=2(6x-6) | | 55=1/2(110-x) | | X*2x+3=180 | | 2x6=30 | | 1/2r-3/2r=-2 | | k/2-8=-5 | | 4y+.0.3=1.5 | | (78x-x)=(3x-10) | | 4y+.3=1.5 | | -52-4x=-9x+18 | | 0.25z=-1.75 | | -34+6x=x=56 | | 2x+3(2x-4)=32 | | 2b-4.6=16.4 |